Self-assembled reduced graphene oxide/polyacrylamide conductive composite films.

نویسندگان

  • Shiyou Yu
  • Ning Li
  • Drew Higgins
  • Deyu Li
  • Qing Li
  • Hui Xu
  • Jacob S Spendelow
  • Gang Wu
چکیده

Substrate supported conductive thin films are prepared by the self-assembly of graphene oxide (GO) on a cationic polyacrylamide (CPAM) layer followed by a subsequent chemical reduction. During self-assembly, the dispersed GO nanosheets with a negative zeta potential from solution are spontaneously assembled onto the positively charged CPAM adsorption layer. In addition, CPAM adsorption on the substrate is studied with an electrochemical quartz crystal microbalance (EQCM), showing adsorption stabilization could be established in less than 150 s. The electrostatic interactions between GO and CPAM are investigated by changing the polarization potential with EQCM for the first time, and optimal conditions for facilitating self-assembly are determined. The self-assembled GO/CPAM films are further characterized by Raman spectroscopy, infrared spectroscopy and atomic force microscopy. Importantly, reduced GO (R-GO)/CPAM composite films exhibiting a sheet resistance of 3.1 kΩ/sq can be obtained via in situ reduction in sodium borohydride for 20 min at room temperature. This provides a simple, highly effective, and green route to prepare conductive graphene-based composite thin films.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

In this paper, reduced graphene oxide (RGO) was prepared by means of γ -ray irradiation of graphene oxide (GO) in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite ...

متن کامل

Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.

Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated w...

متن کامل

Liquid Crystalline Graphene Oxide/PEDOT:PSS Self-Assembled 3D Architecture for Binder-Free Supercapacitor Electrodes

*Correspondence: Hua Kun Liu and Konstantin Konstantinov , Institute for Superconducting and Electronic Materials, University of Wollongong, AIIM Facility, Innovation Campus, North Wollongong, NSW 2522, Australia e-mail: [email protected]; [email protected] Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convenient method. Liquid crystalline graphene oxide wa...

متن کامل

Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics.

Graphene oxide (GO) nanosheets and polyoxometalate clusters, H(3)PW(12)O(40) (PW), were co-assembled into multilayer films via electrostatic layer-by-layer assembly. Under UV irradiation, a photoreduction reaction took place in the films which converted GO to reduced GO (rGO) due to the photocatalytic activity of PW clusters. By this means, uniform and large-area composite films based on rGO we...

متن کامل

Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films

Nanoparticles hosted in conductive matrices are ubiquitous in electrochemical energy storage, catalysis and energetic devices. However, agglomeration and surface oxidation remain as two major challenges towards their ultimate utility, especially for highly reactive materials. Here we report uniformly distributed nanoparticles with diameters around 10 nm can be self-assembled within a reduced gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 22  شماره 

صفحات  -

تاریخ انتشار 2014